### The Birthday Problem

August 4, 2010 Today is the birthday of one of my family members. To celebrate, I'm reviewing a bit of mathematics called the "Birthday Problem." I was introduced to the Birthday Problem when I was in high school. I attended a weekly mathematics seminar, called the Colgate Seminar, taught by a rotating corp of professors from nearby Colgate University. The Birthday problem is an example problem that's often used with high school students. The math isn't difficult, and the result is surprising. The problem is this - how many people do you need in a room, such that it's more likely than not that two of them have the same birthday? The important piece of the problem is not that any person has a particular birthday, or any person has the same birthday as one particular person; rather, that any two people will have the same birthday. To make things simple, disregard leap years, consider just 365 days in a year, and ignore twins. Surprisingly, there was a set of twins in my seminar session. The mathematics is quite simple. We use the principle that we can calculate the probability of independent events happening at the same time by multiplying their separate probabilities. We start with the first pair of people, N = i and N = (i + 1). The probability that person (i + 1) has a different birthday than person i is 364/365; that is, person (i + 1) must be born on any of the remaining 364 days that are not the birthday of person i. Bringing in another person (i + 2), and comparing him with persons i and (i + 1) gives us a probability of 363/365 that his birthday differs from the previous people. Continuing the calculationP = (364/365)(363/365)(362/365)...or, in compact notation where P(N) is the probability that in a group of N people, no two will have the same birthday. Of course, what we want is (1 - P(N)), the probability that two will have the same birthday. As you can see from the table, not that many people are needed to have just a 50:50 chance. It takes just 23 people to have a 50.7% probability that two will have the same birthday.

N | P(N) | 1 - P(N) |

5 | 0.97286 | 0.02714 |

10 | 0.88305 | 0.11695 |

15 | 0.74710 | 0.25290 |

20 | 0.58856 | 0.41144 |

25 | 0.43130 | 0.56870 |

30 | 0.29368 | 0.70632 |

35 | 0.18562 | 0.81438 |

40 | 0.10877 | 0.89123 |

45 | 0.05902 | 0.94098 |

50 | 0.02963 | 0.97037 |

^{N}codes, you'll get a collision not after 2

^{N}codes are generated, but rather after only 2

^{N/2}codes are generated. There is, in fact, a so-called birthday attack on hash functions; viz., generating multiple messages and finding a collision between an arbitrary pair of them is far easier than generating a document that has the same hash value as a particular document. For example, you may want to generate two nearly similar contracts that have the same hash value (a.k.a., digital signature), so you insert commas, extra spaces or blank lines, or use synonyms for words, until you get a collision. Then, one contract can be substituted for the other at a later time. I mentioned my high school interest in mathematics (see the figure). I did pursue a career in a mathematically intensive field; but I didn't particularly care for mathematics instruction, so I never considered becoming a mathematician. In later life, I've rediscovered some interesting mathematics, and I'm happy that I had enough math education for me to do some independent study.

### References:

*Permanent Link to this article*

Linked Keywords: Colgate Seminar; Colgate University; probability; cryptographic hash functions; hash collisions; birthday attack

RSS Feed

### Google Search

Latest Books by Dev Gualtieri

*Mathematics-themed novel for middle-school students*

*Complete texts of LGM, Mother Wode, and The Alchemists of Mars*

Other Books

- No Bang? - October 3, 2022

- Elasto-Magnetic Materials - September 26, 2022

- Analog Neural Networks - September 19, 2022

- Functional Materials Discovery - September 12, 2022

- Mood Lighting - September 5, 2022

- Martian Radiation - August 29, 2022

- Mineral Diversity - August 22, 2022

- Mistletoe Glue - August 15, 2022

- Gaia Asteroid Census - August 8, 2022

- Portrayal of Professions - August 1, 2022

- Odd Neural Networks - July 25, 2022

- Colloidal Pre-Assembly - July 18, 2022

- Atmospheric Water Harvesting - July 11, 2022

- Singing Saw - July 4, 2022

- Product Authentication - June 27, 2022

- Gel and Granular Flow - June 20, 2022

- Robot-Safe Jobs - June 12, 2022

- Methane and Global Warming - June 6, 2022

- Thermophotovoltaics - May 30, 2022

- Volcanic Ash and Aviation - May 23, 2022

- Text Topography - May 16, 2022

- Anthropocene Extinctions - May 9, 2022

- Happy Numbers - May 2, 2022

- Crater Counts - April 25, 2022

- Rare Earths from Coal Waste - April 18, 2022

- Terahertz Imaging - April 11, 2022

- Science Gurus - April 4, 2022

- Ball Lightning - March 28, 2022

- Antimatter - March 21, 2022

- Sum of Three Cubes - March 14, 2022

- Bridgmanite - March 7, 2022

### Deep Archive

Deep Archive 2006-2008

**Blog Article Directory on a Single Page**