## The Square Root of TwoJune 6, 2016 As an undergraduate, I encountered quite a few interesting people from among both students and professors. There was the economics professor who wore the same necktie with a graph paper motif every day. There was the physics graduate student teaching assistant who began our first session by placing a trash can on his desk and saying, "elephant." He explained that was his way of ensuring that he would be remembered. He was right. One of my student acquaintances was so comical, he should have made a career as a late night television host, and not as an engineer. One of his routines was to mimic the lectures of a certain professor. He would write furiously on a blackboard, stop, tap the chalk on a particular equation, look towards his audience, and exclaim, "Take square root... Take square root!" The square root of two (1.4142135623..., sequence no. A002193 in the On-Line Encyclopedia of Integer Sequences) is an irrational number; that is, it can't be expressed as a ratio of integers. The integers include the natural numbers. Early mathematicians considered negative numbers to be absurd. For that reason, all their fractions involved ratios of natural numbers, only. While the word, "absurd," means irrational, "surd" is actually a mathematics term relating to the roots of equations.
reductio ad absurdum. In this method, a proposition is shown to have two incompatible qualities, such as a number being both odd and even. This proof in the context of Hippasus's triangle is tedious, so it won't be explained here. You can read it on Wikipedia. I'll give a proof in modern notation, which is easier to understand.
First, we suppose that the square root of two really is rational, so it can be written as the ratio of two integers, p and q. We suppose the fraction has been reduced by canceling all common factors of p and q.
p must be an even number.
^{2}p is even, then ^{2}p is even. You can see that this is true, since having a 1, 3, 5, 7, or 9 as the last digit of p would give 1, 9, 5, 9, or 1 as the last digit of p. If ^{2}p is even, then p is divisible by four, so ^{2}q and ^{2}q must be even.
Now comes the reductio ad absurdum part. We showed that both p and q are even, which contradicts our requirement that the initial fraction was properly reduced. Since our analysis gives this false result, then our initial assumption that the square root of two is rational is also false.
The date for the Greek proof of the irrationality of the square root of two is about 450 BC. The Greeks, however, weren't the only people doing mathematics in antiquity. As I wrote in a recent article (Mathematical Astronomy in Babylon, March 10, 2016), the Babylonians were adept at the use of mathematics in astronomy from a very early date.
Benjamin M. Altschuler of the The Fieldston School (Bronx, New York), and Eric L. Altschuler of the Lewis Katz School of Medicine at Temple University (Philadelphia, Pennsylvania), have just presented evidence that a clay tablet from the Old Babylonian Empire (20th - 16th centuries BC) may contain a geometrical construction leading to a proof of the irrationality of the square root of two similar to that of Hippasus.[2]
This tablet, known as BM 15285,[3] contains 41 geometrical area problems. Problem twelve, as shown in the figure, has the following associated text: "The side of the square is 60 rods. Inside it [I drew]16 wedges [triangles]. What are their areas?"[2] The figure does not accompany an explicit proof of the irrationality of the square root of two, but the authors explain that its essential elements are there. See the arXiv paper for details.[2]
## References:- "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk."
- Benjamin M. Altschuler and Eric L. Altschuler, "Proof of the Irrationality of the Square Root of Two in Babylonian Geometry Problem Tablets," arXiv, March 22, 2016.
- Images of Babylonian tablet BM15285, PDF file at the University of Helsinki.
Linked Keywords: Undergraduate; student; professor; economics; necktie; graph paper; motif; physics; postgraduate education; graduate student; teaching assistant; waste container; trash can; desk; elephant; comedy; comical; career; late night television host; engineer; sketch comedy; routine; impressionist; mimic; lecture; blackboard; chalk; equation; audience; square root; square root of two; A002193; On-Line Encyclopedia of Integer Sequences; irrational number; ratio; integer; natural numbers; mathematician; negative number; absurd; surd; Thales; Pythagoras; Thales' theorem; angle; semicircle; right angle; Egyptian pyramids; similar triangles; Pythagorean theorem; geometry; geometrical; Tetractys; Nuremberg chronicle; Wikimedia Commons; counting numbers; nature; natural; window; tree; German; Leopold Kronecker; scientist; engineer; Kronecker delta function; Georg Cantor; God; man; musical instrument; string; fraction; harmony; harmonious; Pythagorean tuning; musical note; tone; perfect fifth; G-note string; C-major scale; just intonation; musical note C; musical note D; musical note E; musical note F; musical note G; musical note A; musical note B; Pythagoreanism; Pythagorean; universe; Hippasus (c. 450 BC); hypotenuse; isosceles triangle; right triangle; legend; deity; god; drowning; drown; sea; punishment; Metapontum; 5th century BC; century; mathematical proof; reductio ad absurdum; number; odd; even; Ancient Greece; irreducible fraction; reduce; factorization; common factors; square; divisor; divisible; Babylonia; Babylonians; The Fieldston School (Bronx, New York); Eric L. Altschuler; Lewis Katz School of Medicine at Temple University (Philadelphia, Pennsylvania); clay tablet; Old Babylonian Empire; area; square; rod; arXiv; Inkscape. |
RSS Feed
## Google Search
Latest Books by Dev Gualtieri
- Levitation - March 27, 2017
- Soybean Graphene - March 23, 2017
- Income Inequality and Geometrical Frustration - March 20, 2017
- Wireless Power - March 16, 2017
- Trilobite Sex - March 13, 2017
- Freezing, Outside-In - March 9, 2017
- Ammonia Synthesis - March 6, 2017
- High Altitude Radiation - March 2, 2017
- C.N. Yang - February 27, 2017
- VOC Detection with Nanocrystals - February 23, 2017
- Molecular Fountains - February 20, 2017
- Jet Lag - February 16, 2017
- Highly Flexible Conductors - February 13, 2017
- Graphene Friction - February 9, 2017
- Dynamic Range - February 6, 2017
- Robert Boyle's To-Do List for Science - February 2, 2017
- Nanowire Ink - January 30, 2017
- Random Triangles - January 26, 2017
- Torricelli's law - January 23, 2017
- Magnetic Memory - January 19, 2017
- Graphene Putty - January 16, 2017
- Seahorse Genome - January 12, 2017
- Infinite c - January 9, 2017
- 150 Years of Transatlantic Telegraphy - January 5, 2017
- Cold Work on the Nanoscale - January 2, 2017
- Holidays 2016 - December 22, 2016
- Ballistics - December 19, 2016
- Salted Frogs - December 15, 2016
- Negative Thermal Expansion - December 12, 2016
- Verbal Cues and Stereotypes - December 8, 2016
- Capacitance Sensing - December 5, 2016
- Gallium Nitride Tribology - December 1, 2016
- Lunar Origin - November 27, 2016
- Pumpkin Propagation - November 24, 2016
- Math Anxiety - November 21, 2016
- Borophene - November 17, 2016
- Forced Innovation - November 14, 2016
- Combating Glare - November 10, 2016
- Solar Tilt and Planet Nine - November 7, 2016
- The Proton Size Problem - November 3, 2016
- Coffee Acoustics and Espresso Foam - October 31, 2016
- SnIP - An Inorganic Double Helix - October 27, 2016
- Seymour Papert (1928-2016) - October 24, 2016
- Mapping the Milky Way - October 20, 2016
- Electromagnetic Shielding - October 17, 2016
- The Lunacy of the Cows - October 13, 2016
- Random Coprimes and Pi - October 10, 2016
- James Cronin (1931-2016) - October 6, 2016
- The Ubiquitous Helix - October 3, 2016
- The Five-Second Rule - September 29, 2016
- Resistor Networks - September 26, 2016
- Brown Dwarfs - September 22, 2016
- Intrusion Rheology - September 19, 2016
- Falsifiability - September 15, 2016
- Fifth Force - September 12, 2016
- Renal Crystal Growth - September 8, 2016
- The Normality of Pi - September 5, 2016
- Metering Electrical Power - September 1, 2016
### Deep ArchiveDeep Archive 2006-2008
Blog Article Directory on a Single Page |

Copyright © 2017 Tikalon LLC, All Rights Reserved.

Last Update: 03-27-2017