### The Pizza Race Problem

January 9, 2013 One way to get children interested in mathematics is to offer them a treat, such as a pie or cake, and have them divide it into fair portions by themselves. If there are just two children, the task can be reduced from a mathematical to a political task. One child cuts, and the other child chooses which half he or she prefers. When there are three children involved, an impromptu lesson in trigonometry emerges in which 120 angular degrees and the definition of the center are the objects of concern. What happens when an object has already been cut into irregular portions, and the diners need to successively take portions? How much of a quantity advantage could one diner have over the others in this sort of game? Also, what happens when a portion of the object has been previously removed; for example, one slice taken from a pizza.*My family finds it difficult to understand why I eat pizza with a knife and fork.Modified Wikimedia Commons image.)*

Sharing an irregularly cut pizza is the question posed in the Pizza Race Problem, an analysis of which was posted by Keyue Gao on arXiv.[1] Gao participated in the New York University Summer Undergraduate Research Experience(SURE) Program. Gao's problem is a variation of a problem first posed by mathematician, Peter M. Winkler, at a 2008 conference in Budapest in honor of Laszlo Lovasz's sixtieth birthday. In the original problem posed by Winkler, Bob and Alice share a pizza, possibly at a cryptography conference. The pizza is irregularly sliced by any number of cuts from the center to the edge. Bob and Alice, being proper mathematicians, have decided to eat this pizza according to the following algorithm:

(1) They choose pieces in an alternating fashion;On each turn, except the first and the last, the diner has a choice of two available pieces. Alice, in selecting first, would take the largest slice, and she would seem to always have an advantage. This is true for an even number of pieces. In that case, Alice, if she chooses wisely, will always get more than half the pizza. What's interesting is that Alice can actually come away with less than half in the odd piece case. Although Alice gets both the first and last piece in an odd piece pizza, Winkler conjectured she might at a minimum get only

(2) Alice starts the meal by selecting any piece of the pizza;

(3) After Alice's first selection, and all subsequent selections, it's only proper to choose one of the pieces adjacent to the empty space.

**4/9**of the pizza. This conjecture was proven by Kolja Knauer, Piotr Micek and Torsten Ueckerdt.[2]

*Bob and Alice select pizza pieces.(Fig. 1 of ref. 2, via the arXiv Preprint Server.)[2)]*

Geometrically, the problem reduces to the selection from a ring of random numbers adding to 360 degrees. Of course, it doesn't really matter what the numbers add up to, since the sum can be scaled to

**2π**, or whatever you want. This makes a computer simulation very easy, since in each case you can just spit out a bunch of random numbers and not worry about their sum. As is my custom, I've written a simple computer simulation for this pizza problem (source code, here). It generates random pizzas, allows Bob and Alice to make random selections, and it keeps track of the largest portion for Alice. As it turns out, Alice will, on average, do very well in sharing an odd piece pizza, even when she chooses her pieces at random. Part of this might be because Alice always selects the largest piece as her first piece; and, for some random pies, this piece can be quite a bit larger than others. The following histogram shows the results of 10,000 trials for an eleven piece pizza in which Alice chooses the largest piece first, and then randomly thereafter.

*The fraction of pizza that Alice can consume from an eleven piece pizza if she selects the first slice and follows a mathematician's dining etiquette.(Graph rendered using Gnumeric.)*

As can be seen in the histogram, random selection does not always give Alice at least four-ninths (0.444...) of the pizza, but it comes quite close. Just a few percent of the random trials fall below four-ninths (347 out of 10,000, or 3.47%, in one particular simulation run). Gao adds another constraint to the problem by requiring Bob or Alice to finish eating their current piece before taking another. In this case, Alice starts first, as before, but the taking of subsequent pieces depends on the size of the pieces currently being eaten. Bob and Alice eat at the same rate. One other constraint is that the sizes of the pieces are such that Alice and Bob will never grab for the same piece at the same time. This type of sharing would be good for Alice if she's on a diet, since Gao demonstrates that she is only guaranteed two-fifths of the pie. This is just a small variation of the result of the original problem (

**0.400**

*vs*

**0.444...**).[1]

### References:

- Keyue Gao, "Pizza Race Problem," arXiv Preprint Server, December 10, 2012
- Kolja Knauer, Piotr Micek and Torsten Ueckerdt, "How to eat 4/9 of a pizza," arXiv Preprint Server, January 24, 2011.

*Permanent Link to this article*

Linked Keywords: Children; mathematics; pie; cake; politics; political; trigonometry; angular degree; center; pizza; family; knife; fork; Wikimedia Commons; arXiv; New York University; mathematician; Peter M. Winkler; Laszlo Lovasz; birthday; Bob and Alice; cryptography; algorithm; geometry; geometrical; circular buffer; ring; random number; computer simulation; source code; pizza.c; randomness; random; histogram; etiquette; Gnumeric; constraint; Keyue Gao; Pizza Race Problem.

### Google Search

Latest Books by Dev Gualtieri

*Mathematics-themed novel for middle-school students*

*Complete texts of LGM, Mother Wode, and The Alchemists of Mars*

Other Books

- Cosmic Glow - January 11, 2021

- Room Temperature Superconductivity - January 4, 2021

- Christmas 2020 - December 21, 2020

- Factorials - December 14, 2020

- Educated Guessing - December 7, 2020

- Polymaths - November 30, 2020

- LEOS - November 23, 2020

- Noisy Civilization - November 16, 2020

- Phase Rule - November 9, 2020

- Armstrong Numbers - November 2, 2020

- Thermoelectrics - October 26, 2020

- Short Words - October 19, 2020

- Heat Sinks - October 12, 2020

- Raindrop Energy-Harvesting - October 5, 2020

- Heat Transfer - September 28, 2020

- Dull Blades - September 21, 2020

- Science Awards - September 14, 2020

- Cubic Earth - September 7, 2020

- Going in Circles - August 31, 2020

- Alchemy and Astrology - August 24, 2020

- T-Waves - August 17, 2020

- Soap Bubble Pollination - August 10, 2020

- Computer Ants - August 3, 2020

- Martian Moon Phobos - July 27, 2020

- The Multifaceted William Shockley - July 20, 2020

- Paving Materials - July 13, 2020

- 400 Years of the Novum Organum - July 6, 2020

### Deep Archive

Deep Archive 2006-2008

**Blog Article Directory on a Single Page**