## Packing and FillingMay 17, 2012 I wrote about packing in a previous article (Packing, November 30, 2010). When my wife and I were first married, one of the first problems we faced was a packing problem. We needed to combine all our possessions into a single small apartment. After the initial condition, the situation was self-regulating, since students never have much money to buy additional household items. Secure transmission of data without the encumbrance of key transfer is an important part of the Internet. We wouldn't want our financial information zipping along through multiple routers unprotected. The packing process was viewed as an early means for public key encryption of data. The Merkle–Hellman knapsack cryptosystem is a public key cipher that's based on the knapsack problem, the idea of which is the optimal packing of items in a knapsack (backpack, rucksack). The knapsack problem a "one-way" problem; that is, it's easier to take items out of an optimally packed sack than putting them back in. It can be idealized mathematically as the subset sum problem of building a subset whose sum is zero from a set of integers. For example,Set: {-22, -5, -3, -2, 1, 3, 4, 7, 9, 14, 18)In the end, the system that was actually used was the different one-way problem that it's easier to multiply large numbers than factor them. This encryption method is used on the web browser that you're using to view this article, even if you're using certain versions of the Lynx web browser. An optimal packing of pennies on a plane occurs when their centers are on an hexagonal lattice, giving an areal density of (π/2√3) = 0.9069 (see figure). This was proven mathematically by Carl Friedrich Gauss for such a lattice packing; and László Fejes Tóth showed that this is the optimal packing, lattice or otherwise.[1]
"Imagine you have a square window and you want to block out as much light as possible by taping some opaque circular tiles to the glass. You can use a mixture of tiles with any radius, and they can overlap with each other, but you only have money to buy five."[4]More technically, filling can be describes as the way you can place N overlapping circles of any size within a bounded area to best fill its area. In looking at the filling example of the triangle in the figure, above, you get the idea that there are special lines on which such circles should be placed. These are called the medial lines. Sharon Glotzer, an author of the study, describes the medial line as the "backbone" of the polygon. Said Glotzer, "Every shape you want to fill has a backbone that goes through the center of the shape, like a spine."[5] An example of the medial lines for a concave polygon and its filling by twenty-one discs are shown in the following figure.
## References:- Weisstein, Eric W. "Circle Packing." From MathWorld--A Wolfram Web Resource.
- Carolyn L. Phillips, Joshua A. Anderson, Greg Huber and Sharon C. Glotzer, "Optimal Filling of Shapes," Physical Review Letters, vol. 108, no. 19 (May 11, 2012), Document No. 198304, 5 pp..
- Carolyn L. Phillips, Joshua A. Anderson, Greg Huber and Sharon C. Glotzer, "Optimal Filling of Shapes," arXiv Preprint Server, February 11, 2012.
- Jessica Thomas, "Thinking Inside the Box," Synopsis of Ref. 2, American Physical Society.
- Katherine McAlpin, "New twist on ancient math problem could improve medicine, microelectronics," University of Michigan Press Release, May 10, 2012.
Linked Keywords: Wife; marriage; married; apartment; initial value problem; initial condition; student; household; secure transmission; key; cryptography; Internet; router; public key encryption; Merkle–Hellman knapsack cryptosystem; cipher; knapsack problem; knapsack; "one-way" problem; mathematics; subset sum problem; subset; set; integer; multiplication; factor; web browser; Lynx; penny; plane; hexagonal lattice; Carl Friedrich Gauss; Fejes Tóth; Wikimedia Commons; circle; areal density; geometry; geometrical; Physical Review Letters; University of Michigan; University of Connecticut; Inkscape; appliqué; perimeter; synopsis; American Physical Society; triangle; Sharon Glotzer; polygon; spine; concave polygon; arXiv Preprint Server; radiation therapy; radiation treatment; tumor; beam diameter; cell telephone tower; ion beam; ion-milling; ion-deposition; algorithm. |
RSS Feed
## Google Search
Latest Books by Dev Gualtieri
- Soybean Graphene - March 23, 2017
- Income Inequality and Geometrical Frustration - March 20, 2017
- Wireless Power - March 16, 2017
- Trilobite Sex - March 13, 2017
- Freezing, Outside-In - March 9, 2017
- Ammonia Synthesis - March 6, 2017
- High Altitude Radiation - March 2, 2017
- C.N. Yang - February 27, 2017
- VOC Detection with Nanocrystals - February 23, 2017
- Molecular Fountains - February 20, 2017
- Jet Lag - February 16, 2017
- Highly Flexible Conductors - February 13, 2017
- Graphene Friction - February 9, 2017
- Dynamic Range - February 6, 2017
- Robert Boyle's To-Do List for Science - February 2, 2017
- Nanowire Ink - January 30, 2017
- Random Triangles - January 26, 2017
- Torricelli's law - January 23, 2017
- Magnetic Memory - January 19, 2017
- Graphene Putty - January 16, 2017
- Seahorse Genome - January 12, 2017
- Infinite c - January 9, 2017
- 150 Years of Transatlantic Telegraphy - January 5, 2017
- Cold Work on the Nanoscale - January 2, 2017
- Holidays 2016 - December 22, 2016
- Ballistics - December 19, 2016
- Salted Frogs - December 15, 2016
- Negative Thermal Expansion - December 12, 2016
- Verbal Cues and Stereotypes - December 8, 2016
- Capacitance Sensing - December 5, 2016
- Gallium Nitride Tribology - December 1, 2016
- Lunar Origin - November 27, 2016
- Pumpkin Propagation - November 24, 2016
- Math Anxiety - November 21, 2016
- Borophene - November 17, 2016
- Forced Innovation - November 14, 2016
- Combating Glare - November 10, 2016
- Solar Tilt and Planet Nine - November 7, 2016
- The Proton Size Problem - November 3, 2016
- Coffee Acoustics and Espresso Foam - October 31, 2016
- SnIP - An Inorganic Double Helix - October 27, 2016
- Seymour Papert (1928-2016) - October 24, 2016
- Mapping the Milky Way - October 20, 2016
- Electromagnetic Shielding - October 17, 2016
- The Lunacy of the Cows - October 13, 2016
- Random Coprimes and Pi - October 10, 2016
- James Cronin (1931-2016) - October 6, 2016
- The Ubiquitous Helix - October 3, 2016
- The Five-Second Rule - September 29, 2016
- Resistor Networks - September 26, 2016
- Brown Dwarfs - September 22, 2016
- Intrusion Rheology - September 19, 2016
- Falsifiability - September 15, 2016
- Fifth Force - September 12, 2016
- Renal Crystal Growth - September 8, 2016
- The Normality of Pi - September 5, 2016
- Metering Electrical Power - September 1, 2016
### Deep ArchiveDeep Archive 2006-2008
Blog Article Directory on a Single Page |

Copyright © 2017 Tikalon LLC, All Rights Reserved.

Last Update: 03-23-2017