## Smith NumbersMay 9, 2012 Mathematicians work with numbers like artists work with paint. Sometimes the numbers are regular, like a Josef Albers' painting. Sometimes they're as chaotic as a painting by Jackson Pollock. Sometimes they're just playful, as in the examples that I give below. One playfully constructed number is Champernowne's number, sometimes called Champernowne's constant. This number is sequence A033307 in the The On-Line Encyclopedia of Integer Sequences, started by Neil Sloane in 1964 when he was still a graduate student. It's named after D. G. Champernowne, the mathematician who published it in 1933 while he was an undergraduate student.[1] Here are it's first few digits0.1234567891011121314151617181920212223...Close inspection shows that it's just the concatenation of all the decimal numbers, which is a very arbitrary way to form a number. Since we're doing such playful things with numbers, why stop with base ten? Remembering that the numbers in base two are expressed as 1, 10, 11, 100, 101, 110, 111, etc., you can build a binary Champernowne number that looks like this, 0.11011100101110111...A palindrome is a word or phrase that's the same whether read forwards or backwards. One famous example of this is Adam's supposed first words to Eve, "Madam, I'm Adam." There are many numbers that have this same property, so writing these would be no fun at all. What's more fun is finding prime numbers with this property. These are called, appropriately, the palindromic primes. A simple example is the number eleven; a more complex one is 17471. The palindromic primes are integer sequence A002385. You can look for palindromic primes in number bases other than ten. The prime number 1991 is also a palindrome when written in hexadecimal, 7C7. These examples use very simple rules to specify unusual numbers. We can be more creative, as Ramanujan was, and form something like the taxicab numbers. G.H. Hardy mentioned in a visit to Ramanujan that he had traveled to see him in a taxicab with the number 1729, which seemed like a dull number. Ramanujan corrected him, saying that 1729 is the smallest number expressible as the sum of two positive cubes in two different ways. 1729 = 1I mentioned taxicab numbers in a previous article (Special Numbers, September 21, 2011). There's another type of number that combines some of the flavor of prime numbers with that of Champernowne's number. These are the Smith numbers, named by the inventive mathematician, Albert Wilansky, who found that the telephone number, 4937775, of his brother-in-law, Harold Smith, had an unusual property. A Smith number is a composite number for which the sum of its digits is equal to the sum of the digits in its prime factorization.[2] Just as for palindrome primes, we're not restricted to base ten. It's important to note that we're talking about the sum of the digits of the factors, not the sum of the factors, themselves. In the case of Smith's telephone number, 4937775 = 3 x 5 x 5 x 65837 (prime factors of 4937775)The Smith numbers are integer sequence A006753. It's been proven that there are infinitely many Smith numbers.[3] Here are the first fifty Smith numbers. 4, 22, 27, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 378, 382, 391, 438, 454, 483, 517, 526, 535, 562, 576, 588, 627, 634, 636, 645, 648, 654, 663, 666, 690, 706, 728, 729, 762, 778, 825, 852, 861, 895, 913, 915, 922, 958, 985, 1086A computer program to generate Smith numbers is very easy to write; so easy, in fact, that I offer my own source code, here. As can be seen from the two following graphs, generated by my data, the Smith numbers (at least below 10,000), on average, are rather uniformly distributed, and the gaps between Smith numbers show no apparent pattern. It would be interesting to assess the gap between Smith numbers as a noise source.
## References:- Eric W. Weisstein, "Champernowne Constant," From MathWorld--A Wolfram Web Resource
- Eric W. Weisstein, "Smith Number," From MathWorld--A Wolfram Web Resource.
- Wayne McDaniel, "The existence of infinitely many k-Smith numbers," Fibonacci Quarterly, vol. 25, no. 1 (February 1987), pp. 76–80.
Linked Keywords: Mathematician; number; artist; paint; Josef AlbersJosef Alber; Homage to the Square; painting; chaos theory; chaotic; Jackson Pollock; Champernowne's number; A033307; The On-Line Encyclopedia of Integer Sequences; Neil Sloane; graduate student; D. G. Champernowne; undergraduate student; concatenation; decimal; base ten; binary; base two; palindrome; Adam; Eve; prime number; palindromic prime; integer sequence A002385; hexadecimal; Ramanujan; taxicab number; G.H. Hardy; taxicab; cube; Smith number; telephone number; composite number; prime factorization; integer sequence A006753; infinite set; computer program; smith.c; uniform distribution; pattern; random number generation; noise source; Gnumeric; histogram; high school; science fair; gmplib.org; big numbers. |
RSS Feed
## Google Search
Latest Books by Dev Gualtieri
- J. Robert Oppenheimer and Black Holes - April 24, 2017
- Modeling Leaf Mass - April 20, 2017
- Easter, Chicks and Eggs - April 13, 2017
- You, Robot - April 10, 2017
- Collisions - April 6, 2017
- Eugene Garfield (1925-2017) - April 3, 2017
- Old Fossils - March 30, 2017
- Levitation - March 27, 2017
- Soybean Graphene - March 23, 2017
- Income Inequality and Geometrical Frustration - March 20, 2017
- Wireless Power - March 16, 2017
- Trilobite Sex - March 13, 2017
- Freezing, Outside-In - March 9, 2017
- Ammonia Synthesis - March 6, 2017
- High Altitude Radiation - March 2, 2017
- C.N. Yang - February 27, 2017
- VOC Detection with Nanocrystals - February 23, 2017
- Molecular Fountains - February 20, 2017
- Jet Lag - February 16, 2017
- Highly Flexible Conductors - February 13, 2017
- Graphene Friction - February 9, 2017
- Dynamic Range - February 6, 2017
- Robert Boyle's To-Do List for Science - February 2, 2017
- Nanowire Ink - January 30, 2017
- Random Triangles - January 26, 2017
- Torricelli's law - January 23, 2017
- Magnetic Memory - January 19, 2017
- Graphene Putty - January 16, 2017
- Seahorse Genome - January 12, 2017
- Infinite c - January 9, 2017
- 150 Years of Transatlantic Telegraphy - January 5, 2017
- Cold Work on the Nanoscale - January 2, 2017
- Holidays 2016 - December 22, 2016
- Ballistics - December 19, 2016
- Salted Frogs - December 15, 2016
- Negative Thermal Expansion - December 12, 2016
- Verbal Cues and Stereotypes - December 8, 2016
- Capacitance Sensing - December 5, 2016
- Gallium Nitride Tribology - December 1, 2016
- Lunar Origin - November 27, 2016
- Pumpkin Propagation - November 24, 2016
- Math Anxiety - November 21, 2016
- Borophene - November 17, 2016
- Forced Innovation - November 14, 2016
- Combating Glare - November 10, 2016
- Solar Tilt and Planet Nine - November 7, 2016
- The Proton Size Problem - November 3, 2016
- Coffee Acoustics and Espresso Foam - October 31, 2016
- SnIP - An Inorganic Double Helix - October 27, 2016
- Seymour Papert (1928-2016) - October 24, 2016
- Mapping the Milky Way - October 20, 2016
- Electromagnetic Shielding - October 17, 2016
- The Lunacy of the Cows - October 13, 2016
- Random Coprimes and Pi - October 10, 2016
- James Cronin (1931-2016) - October 6, 2016
- The Ubiquitous Helix - October 3, 2016
- The Five-Second Rule - September 29, 2016
- Resistor Networks - September 26, 2016
- Brown Dwarfs - September 22, 2016
- Intrusion Rheology - September 19, 2016
- Falsifiability - September 15, 2016
- Fifth Force - September 12, 2016
- Renal Crystal Growth - September 8, 2016
- The Normality of Pi - September 5, 2016
- Metering Electrical Power - September 1, 2016
### Deep ArchiveDeep Archive 2006-2008
Blog Article Directory on a Single Page |

Copyright © 2017 Tikalon LLC, All Rights Reserved.

Last Update: 04-24-2017