## P = NPJune 9, 2014 By your many years of attempting to impress your professors, you've learned the art of cocktail party conversation. Masters of this art will be able to talk grandly on most topics up to a limit of about a minute, at which time the conversation has hopefully changed subject. It's much more entertaining than just talking about the weather. Things are a little harder when you're talking among your scientific peers, whose depth of knowledge transcends that of the typical Sangria sipper. In that case, you meed to haul out the big guns. Among computer people, a casual mention of the Entscheidungsproblem is usually all you need to gain your listener's respect without worrying about follow-up questions. It's a subject of which everyone has heard, because of its historical significance and association with Alan Turing, but very few have actually studied. Since the early center of science and mathematics was Europe, including Germany, many fundamental problems have German names. These range from the simple Aufbauprinzip (Aufbau principle) to the tongue-twisting Entscheidungsproblem. This might be expected from a country where the research foundation is called Deutsche Forschungsgemeinschaft. The "halting problem," as it's known in English, is a computer science version of the cinema scientist's lament that "there are things that Man was not meant to know." Possibly the best statement of the halting problem was written in 1935 by mathematician, Alonzo Church, who was considering what it means for a function to be calculable. He decided that the function would contain an algorithm, and you would know when the algorithm terminated; that is, the algorithm yields an answer. In computer science terms, this means knowing that your program, for a particular input, will eventually halt, or goes on forever. Alan Turing, in his 1937 paper, "On Computable Numbers With an Application to the Entscheidungsproblem," addressed the problem by first constructing a universal computer, his Turing machine. He proved that it wasn't possible to decide whether a program on such a machine will halt, effectively proving that there are things that computer scientists are not meant to know.
^{1}, N^{2}, or N^{3}, and so on. NP execution, however, would be something like 2^{N}, which becomes very large for large N.
It would be nice if every problem with a quickly verified solution would have an algorithm that allows its quick computation as well. In the language of computer science, we would like to have P=NP, rather than the converse, P≠NP. This P vs NP problem is an open problem that's important enough to have been designated one of the seven, million dollar, Millennium Prize Problems selected by the Clay Mathematics Institute. Its solution would be important to such diverse areas as cryptography and economics.
Public key cryptography involves the idea that it's easy to multiply two huge prime numbers to get an even larger number, but it's very difficult to factor that large number into its prime components. The factoring is NP. Nearly every NP problem is NP-complete, a terminology expressing the fact that a polynomial solution of any one of those can be easily applied to the rest.[1] The traveling-salesman problem, which I wrote about in a previous article (The Traveling Salesman Problem, March 1, 2013), is NP-complete.
The problem expressed in the above cartoon is NP-complete, but there are so few elements that the solution can be found by inspection, or just a few computer calculations. When the cartoonist, Randall Munroe, created the cartoon, he didn't realize that the problem had more than one solution.[2] These are seven mixed fruit orders and the combination of one order of mixed fruit, two orders of hot wings, and one sampler plate. One web site has a few elegant programs for the efficient solution of this particular problem.[3]
My computer solution is not at all elegant, although it is very general. I used a the Monte Carlo method, and you can view my C language source code, here. In the Monte Carlo method, you try random combinations of multiples of the items until you find one that works. There's some method to the madness, since you purposely don't select multiples of any one item that will go over the limit ($15.05, in this case), as shown in the table.
So, how well does this approach work? As can be seen in the histogram, the program often finds a solution after just a few random selections. If you just multiply the maximum numbers in the table, you get 3360, so you should expect to find a solution somewhat close to that number of random selections, if a solution exists. You'll note, also, that there are still cases for which a solution is found at our patience limit, which was 30,000 random selections.
## References:- Larry Hardesty, "Explained: P vs. NP," MIT News Office, October 29, 2009.
- Explain 287: NP-Complete, Explain xkcd Web Site.
- Solving the NP-complete problem in XKCD, Stack Overflow Web Site.
Linked Keywords: Professor; cocktail party; conversation; entertainment; entertaining; weather; science; scientific; peer; knowledge; Sangria; computer scientist; computer people; halting problem; Entscheidungsproblem; history; historical; Alan Turing; science; mathematics; Europe; Germany; German language; Aufbau principle; Aufbauprinzip; research; foundation; Deutsche Forschungsgemeinschaft; English language; computer science; film; cinema; scientist; lament; mathematician; Alonzo Church; function; calculation; calculable; algorithm; computer programming; program; On Computable Numbers With an Application to the Entscheidungsproblem; Turing machine; Mike Davey; YouTube video; Wikimedia Commons; peer review; referee; research proposal; cartoon; subset sum problem; set; number; addition; NP Complete, xkcd comic no. 287; Randall Munroe; xkcd Comics; Creative Commons Attribution-NonCommercial 2.5 License; polynomial; time; nondeterministic polynomial; polynomial time; converse; P |
RSS Feed
## Google Search
Latest Books by Dev Gualtieri
- J. Robert Oppenheimer and Black Holes - April 24, 2017
- Modeling Leaf Mass - April 20, 2017
- Easter, Chicks and Eggs - April 13, 2017
- You, Robot - April 10, 2017
- Collisions - April 6, 2017
- Eugene Garfield (1925-2017) - April 3, 2017
- Old Fossils - March 30, 2017
- Levitation - March 27, 2017
- Soybean Graphene - March 23, 2017
- Income Inequality and Geometrical Frustration - March 20, 2017
- Wireless Power - March 16, 2017
- Trilobite Sex - March 13, 2017
- Freezing, Outside-In - March 9, 2017
- Ammonia Synthesis - March 6, 2017
- High Altitude Radiation - March 2, 2017
- C.N. Yang - February 27, 2017
- VOC Detection with Nanocrystals - February 23, 2017
- Molecular Fountains - February 20, 2017
- Jet Lag - February 16, 2017
- Highly Flexible Conductors - February 13, 2017
- Graphene Friction - February 9, 2017
- Dynamic Range - February 6, 2017
- Robert Boyle's To-Do List for Science - February 2, 2017
- Nanowire Ink - January 30, 2017
- Random Triangles - January 26, 2017
- Torricelli's law - January 23, 2017
- Magnetic Memory - January 19, 2017
- Graphene Putty - January 16, 2017
- Seahorse Genome - January 12, 2017
- Infinite c - January 9, 2017
- 150 Years of Transatlantic Telegraphy - January 5, 2017
- Cold Work on the Nanoscale - January 2, 2017
- Holidays 2016 - December 22, 2016
- Ballistics - December 19, 2016
- Salted Frogs - December 15, 2016
- Negative Thermal Expansion - December 12, 2016
- Verbal Cues and Stereotypes - December 8, 2016
- Capacitance Sensing - December 5, 2016
- Gallium Nitride Tribology - December 1, 2016
- Lunar Origin - November 27, 2016
- Pumpkin Propagation - November 24, 2016
- Math Anxiety - November 21, 2016
- Borophene - November 17, 2016
- Forced Innovation - November 14, 2016
- Combating Glare - November 10, 2016
- Solar Tilt and Planet Nine - November 7, 2016
- The Proton Size Problem - November 3, 2016
- Coffee Acoustics and Espresso Foam - October 31, 2016
- SnIP - An Inorganic Double Helix - October 27, 2016
- Seymour Papert (1928-2016) - October 24, 2016
- Mapping the Milky Way - October 20, 2016
- Electromagnetic Shielding - October 17, 2016
- The Lunacy of the Cows - October 13, 2016
- Random Coprimes and Pi - October 10, 2016
- James Cronin (1931-2016) - October 6, 2016
- The Ubiquitous Helix - October 3, 2016
- The Five-Second Rule - September 29, 2016
- Resistor Networks - September 26, 2016
- Brown Dwarfs - September 22, 2016
- Intrusion Rheology - September 19, 2016
- Falsifiability - September 15, 2016
- Fifth Force - September 12, 2016
- Renal Crystal Growth - September 8, 2016
- The Normality of Pi - September 5, 2016
- Metering Electrical Power - September 1, 2016
### Deep ArchiveDeep Archive 2006-2008
Blog Article Directory on a Single Page |

Copyright © 2017 Tikalon LLC, All Rights Reserved.

Last Update: 04-24-2017