### Four Square Theorem

September 7, 2011 It seems that every educated person has heard of Fermat's Last Theorem, although it's likely that only the mathematically-minded can state what it is. As I wrote in a previous article (You Can Get There From Here, March 26, 2008), Fermat's Last Theorem simply states that for integers n>2, the equation,ahas no solutions other than a=b=c=0. Princeton University mathematicians Andrew Wiles and Richard Taylor proved the theorem was true in 1994, more than 350 years after it was stated. The conjecture was stated by Pierre de Fermat in 1637, famously in the margin of a copy of Arithmetica by Diophantus. Fermat claimed he had a proof that was too large to fit in the margin. There's a distant cousin to this theorem that's found also in Arithmetica. It's not quite as difficult. Lagrange proved it in 1770, and an undergraduate mathematics major can understand the short proof, which can be found here. It's called Lagrange's Four-Square Theorem, and it's simply the fact that every positive integer^{n}+ b^{n}= c^{n}

**n**can be written as the sum of four squares; that is,

n = awhere^{2}+ b^{2}+ c^{2}+ d^{2},

**a**,

**b**,

**c**and

**d**are integers. Sometimes the qualification, "at most, four squares," is used. If we allow the square of zero, that qualification isn't needed.

__Joseph Louis Lagrange__

Lagrange is known for much more than his mathematics. He's well known to physicists for the Lagrangian; and to astronomers for the Lagrangian points, to name just two.

(Via Wikimedia Commons))

Surprisingly, Euler was not able to prove the theorem himself, although he contributed a piece called the four-square identity. As usual, the theorem started as a conjecture. The conjecture, called Bachet's conjecture, was stated by Claude Gaspard Bachet de Méziriac, a French mathematician and classics scholar, who translated Diophantus' Arithmetica, with commentary, from Greek to Latin in 1621. A portion of the section of the book that describes the conjecture appears below.

*Diophantus Arithmetica, Latin translation by Bachet, 1621, top of page IIII-241. (Via Google Books).[2].*

The last line in the figure reads,

Interim libet id inductione confirmare, ostendendo propriu esse numerorum omnium ab 1 usque ad 120, ut constant ex sequenti diagrammate.Bachet then presents a table of examples for all numbers from 1 - 120 that includes the following:

In the mean time I want to confirm this by induction, specifically by showing it for all of the numbers from 1 to 120, as is evident from the following table.(My translation)

28 = 1In 1798, Adrien-Marie Legendre advanced the theorem by a partial proof that only three squares are needed to represent a positive integer, if, and only if, the integer is not of the form 2^{2}+ 1^{2}+ 1^{2}+ 5^{2}

28 = 1^{2}+ 3^{2}+ 3^{2}+ 3^{2}

28 = 2^{2}+ 2^{2}+ 2^{2}+ 4^{2}

48 = 4^{2}+ 4^{2}+ 4^{2}

48 = 2^{2}+ 2^{2}+ 2^{2}+ 6^{2}

60 = 1^{2}+ 1^{2}+ 3^{2}+ 7^{2}

60 = 1^{2}+ 3^{2}+ 5^{2}+ 5^{2}

60 = 2^{2}+ 2^{2}+ 4^{2}+ 6^{2}

112 = 2^{2}+ 2^{2}+ 2^{2}+ 10^{2}

112 = 2^{2}+ 6^{2}+ 6^{2}+ 6^{2}

112 = 4^{2}+ 4^{2}+ 4^{2}+ 8^{2}

120 = 2^{2}+ 4^{2}+ 10^{2}

^{2k}(8m + 7), where k and m are positive integers. Gauss plugged a gap in Legendre's proof. One very interesting discovery was made by Jacobi, who found that the number of ways a positive integer n can be represented as a sum of four squares is eight times the sum of the divisors of n, for odd n, and 24 times the sum of the odd divisors, for even n. Note that in order to get Jacobi's count, the numbers being squared can be negative, and you need to count all combinations of numbers; that is,

1 = 1^{2}+ 0^{2}+ 0^{2}+ 0^{2}

1 = 0^{2}+ 1^{2}+ 0^{2}+ 0^{2}

1 = (-1)^{2}+ 0^{2}+ 0^{2}+ 0^{2}

etc...

### References:

- Eric W. Weisstein, "Lagrange's Four-Square Theorem," MathWorld--A Wolfram Web Resource.
- Claude Gaspar Bachet, translator: "Diophantus of Alexandria, Arithmetica," 1621, via Google Books.

*Permanent Link to this article*

Linked Keywords: Liberal arts; Fermat's Last Theorem; mathematics; integer; equation; Princeton University; Andrew Wiles; Richard Taylor; conjecture; Arithmetica; Diophantus; Lagrange; undergraduate; Lagrange's Four-Square Theorem; square; Lagrangian; Lagrangian point; Wikimedia Commons; Euler; four-square identity; Claude Gaspard Bachet de Méziriac; French; mathematician; classics; Greek; Latin; Google Books; Adrien-Marie Legendre; if, and only if; Gauss; Jacobi's four-square theorem; Carl Gustav Jacob Jacobi; Eric W. Weisstein.

### Google Search

Latest Books by Dev Gualtieri

*Mathematics-themed novel for middle-school students*

*Complete texts of LGM, Mother Wode, and The Alchemists of Mars*

Other Books

- Analog Neural Networks - September 19, 2022

- Functional Materials Discovery - September 12, 2022

- Mood Lighting - September 5, 2022

- Martian Radiation - August 29, 2022

- Mineral Diversity - August 22, 2022

- Mistletoe Glue - August 15, 2022

- Gaia Asteroid Census - August 8, 2022

- Portrayal of Professions - August 1, 2022

- Odd Neural Networks - July 25, 2022

- Colloidal Pre-Assembly - July 18, 2022

- Atmospheric Water Harvesting - July 11, 2022

- Singing Saw - July 4, 2022

- Product Authentication - June 27, 2022

- Gel and Granular Flow - June 20, 2022

- Robot-Safe Jobs - June 12, 2022

- Methane and Global Warming - June 6, 2022

- Thermophotovoltaics - May 30, 2022

- Volcanic Ash and Aviation - May 23, 2022

- Text Topography - May 16, 2022

- Anthropocene Extinctions - May 9, 2022

- Happy Numbers - May 2, 2022

- Crater Counts - April 25, 2022

- Rare Earths from Coal Waste - April 18, 2022

- Terahertz Imaging - April 11, 2022

- Science Gurus - April 4, 2022

- Ball Lightning - March 28, 2022

- Antimatter - March 21, 2022

- Sum of Three Cubes - March 14, 2022

- Bridgmanite - March 7, 2022

### Deep Archive

Deep Archive 2006-2008

**Blog Article Directory on a Single Page**