## Four Square TheoremSeptember 7, 2011 It seems that every educated person has heard of Fermat's Last Theorem, although it's likely that only the mathematically-minded can state what it is. As I wrote in a previous article (You Can Get There From Here, March 26, 2008), Fermat's Last Theorem simply states that for integers n>2, the equation,ahas no solutions other than a=b=c=0. Princeton University mathematicians Andrew Wiles and Richard Taylor proved the theorem was true in 1994, more than 350 years after it was stated. The conjecture was stated by Pierre de Fermat in 1637, famously in the margin of a copy of Arithmetica by Diophantus. Fermat claimed he had a proof that was too large to fit in the margin. There's a distant cousin to this theorem that's found also in Arithmetica. It's not quite as difficult. Lagrange proved it in 1770, and an undergraduate mathematics major can understand the short proof, which can be found here. It's called Lagrange's Four-Square Theorem, and it's simply the fact that every positive integer n can be written as the sum of four squares; that is,
n = awhere a, b, c and d are integers. Sometimes the qualification, "at most, four squares," is used. If we allow the square of zero, that qualification isn't needed.
Diophantus Arithmetica, Latin translation by Bachet, 1621, top of page IIII-241. (Via Google Books).[2]
The last line in the figure reads,
Interim libet id inductione confirmare, ostendendo propriu esse numerorum omnium ab 1 usque ad 120, ut constant ex sequenti diagrammate.Bachet then presents a table of examples for all numbers from 1 - 120 that includes the following: 28 = 1In 1798, Adrien-Marie Legendre advanced the theorem by a partial proof that only three squares are needed to represent a positive integer, if, and only if, the integer is not of the form 2 ^{2k}(8m + 7), where k and m are positive integers. Gauss plugged a gap in Legendre's proof.
One very interesting discovery was made by Jacobi, who found that the number of ways a positive integer n can be represented as a sum of four squares is eight times the sum of the divisors of n, for odd n, and 24 times the sum of the odd divisors, for even n. Note that in order to get Jacobi's count, the numbers being squared can be negative, and you need to count all combinations of numbers; that is,
1 = 1 ## References:- Eric W. Weisstein, "Lagrange's Four-Square Theorem," MathWorld--A Wolfram Web Resource.
- Claude Gaspar Bachet, translator: "Diophantus of Alexandria, Arithmetica," 1621, via Google Books.
Linked Keywords: Liberal arts; Fermat's Last Theorem; mathematics; integer; equation; Princeton University; Andrew Wiles; Richard Taylor; conjecture; Arithmetica; Diophantus; Lagrange; undergraduate; Lagrange's Four-Square Theorem; square; Lagrangian; Lagrangian point; Wikimedia Commons; Euler; four-square identity; Claude Gaspard Bachet de Méziriac; French; mathematician; classics; Greek; Latin; Google Books; Adrien-Marie Legendre; if, and only if; Gauss; Jacobi's four-square theorem; Carl Gustav Jacob Jacobi; Eric W. Weisstein. |
RSS Feed
## Google Search
Latest Books by Dev Gualtieri
- Rough Microparticles - July 17, 2017
- Robot Musicians - July 10, 2017
- Walter Noll (1925-2017) - July 6, 2017
- cosmogony - July 3, 2017
- Crystal Prototypes - June 29, 2017
- Voice Synthesis - June 26, 2017
- Refining Germanium - June 22, 2017
- Granular Capillarity - June 19, 2017
- Kirchhoff–Plateau Problem - June 15, 2017
- Self-Assembly - June 12, 2017
- Physics, Math, and Sociology - June 8, 2017
- Graphene from Ethylene - June 5, 2017
- Crystal Alignment Forces - June 1, 2017
- Martian Brickwork - May 29, 2017
- Carbon Nanotube Textile - May 25, 2017
- The Scent of Books - May 22, 2017
- Patterns from Randomness - May 18, 2017
- Terpene - May 15, 2017
- The Physics of Inequality - May 11, 2017
- Asteroid 2015 BZ509 - May 8, 2017
- Fuzzy Fibers - May 4, 2017
- The Sofa Problem - May 1, 2017
- The Wisdom of Composite Crowds - April 27, 2017
- J. Robert Oppenheimer and Black Holes - April 24, 2017
- Modeling Leaf Mass - April 20, 2017
- Easter, Chicks and Eggs - April 13, 2017
- You, Robot - April 10, 2017
- Collisions - April 6, 2017
- Eugene Garfield (1925-2017) - April 3, 2017
- Old Fossils - March 30, 2017
- Levitation - March 27, 2017
- Soybean Graphene - March 23, 2017
- Income Inequality and Geometrical Frustration - March 20, 2017
- Wireless Power - March 16, 2017
- Trilobite Sex - March 13, 2017
- Freezing, Outside-In - March 9, 2017
- Ammonia Synthesis - March 6, 2017
- High Altitude Radiation - March 2, 2017
- C.N. Yang - February 27, 2017
- VOC Detection with Nanocrystals - February 23, 2017
- Molecular Fountains - February 20, 2017
- Jet Lag - February 16, 2017
- Highly Flexible Conductors - February 13, 2017
- Graphene Friction - February 9, 2017
- Dynamic Range - February 6, 2017
- Robert Boyle's To-Do List for Science - February 2, 2017
- Nanowire Ink - January 30, 2017
- Random Triangles - January 26, 2017
- Torricelli's law - January 23, 2017
- Magnetic Memory - January 19, 2017
- Graphene Putty - January 16, 2017
- Seahorse Genome - January 12, 2017
- Infinite c - January 9, 2017
- 150 Years of Transatlantic Telegraphy - January 5, 2017
- Cold Work on the Nanoscale - January 2, 2017
### Deep ArchiveDeep Archive 2006-2008
Blog Article Directory on a Single Page |

Copyright © 2017 Tikalon LLC, All Rights Reserved.

Last Update: 07-17-2017