1) Start with a natural number, n0Note the conditional statement expressed in steps 2-3. The conjecture, as expressed in step 4, is that such sequences will always terminate in one, independently of the starting value, n0. The conjecture is unproven, but all sequences tested have ended in one.[2] The following plot shows the sequence starting at n = 983.
2) If n is even, then ni+1 = ni/2
3) If n is odd, then ni+1 = 3ni + 1
4) Continue at step (2) until n = 1
![]() |
The 56-cycle Conway sequence, from Richard K. Guy, Tanya Khovanova and Julian Salazar, "Conway's subprime Fibonacci sequences."[3] Shown are the nodes of the sequence, which are coprime odd integers not preceded by an odd term, and the number of terms between them. (Via arXiv Preprint Server)[3]. |
![]() |
The 136-cycle Conway sequence. Unlike the Collatz sequences, which terminate in one, this sequence is periodic after a few initial terms. (Graph rendered by Gnumeric). |